
11

Obtaining and Managing Answer Quality for Online
Data-Intensive Services

JAIMIE KELLEY, CHRISTOPHER STEWART, and NATHANIEL MORRIS,

Ohio State University

DEVESH TIWARI, Northeastern University

YUXIONG HE and SAMEH ELNIKETY, Microsoft Research

Online data-intensive (OLDI) services use anytime algorithms to compute over large amounts of data and
respond quickly. Interactive response times are a priority, so OLDI services parallelize query execution across
distributed software components and return best effort answers based on the data so far processed. Omitted
data from slow components could lead to better answers, but tracing online how much better the answers
could be is difficult. We propose Ubora, a design approach to measure the effect of slow-running components
on the quality of answers. Ubora randomly samples online queries and executes them a second time. The
first online execution omits data from slow components and provides interactive answers. The second ex-
ecution uses mature results from intermediate components completed after the online execution finishes.
Ubora uses memoization to speed up mature executions by replaying network messages exchanged between
components. Our systems-level implementation works for a wide range of services, including Hadoop/Yarn,
Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question-answering system.
Ubora computes answer quality with more mature executions per second than competing approaches that
do not use memoization. With Ubora, we show that answer quality is effective at guiding online admission
control. While achieving the same answer quality on high-priority queries, our adaptive controller had 55%
higher peak throughput on low-priority queries than a competing controller guided by the rate of timeouts.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and Software—
Performance Evaluation (Efficiency and Effectiveness)

General Terms: Management, Measurement

Additional Key Words and Phrases: Answer quality, big data, services

ACM Reference Format:

Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari, Yuxiong He, and Sameh Elnikety.
2017. Obtaining and managing answer quality for online data-intensive services. ACM Trans. Model. Per-
form. Eval. Comput. Syst. 2, 2, Article 11 (April 2017), 31 pages.
DOI: http://dx.doi.org/10.1145/3055280

1. INTRODUCTION

Online data-intensive (OLDI) services, such as product recommendation, sentiment
analysis, question answering, and search engines, power many popular Web sites

This work was supported by NSF grants CAREER CNS-1350941 and CNS-1320071, and also by the Oak
Ridge Leadership Computing Facility managed by UT Battelle, LLC for the U.S. DOE (contract DE-AC05-
00OR22725).
Authors’ addresses: J. Kelley, C. Stewart, and N. Morris, The Ohio State University, Department of Computer
Science and Engineering, 395 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH 43210-1277; emails:
kelley.530@osu.edu, cstewart@cse.ohio-state.edu, morris.743@osu.edu; D. Tiwari, Northeastern University,
Electrical and Computer Engineering, 409 Dana, 360 Huntington Avenue, Boston, MA 02115; email: Tiwari@
northeastern.edu; Y. He and S. Elnikety, Microsoft Research Redmond, 1 Microsoft Way, Redmond, WA 98052;
emails: {yuxhe, samehe}@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2017 ACM 2376-3639/2017/04-ART11 $15.00
DOI: http://dx.doi.org/10.1145/3055280

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:2 J. Kelley et al.

and enterprise products. Like traditional Internet services, OLDI services must
answer queries quickly. For example, Microsoft Bing’s revenue would decrease by
$316M if it answered search queries 500ms slower [Forrest 2009]. Similarly, IBM’s
deep question-answering (DeepQA) implementation, Watson, would have lost to elite
Jeopardy contestants if it waited too long to answer [Lenchner 2011; Ferrucci 2010].
However, OLDI and traditional services differ during query execution. Traditional
services use structured databases to retrieve provably correct answers, but OLDI
services use loosely structured or unstructured data. Extracting answers from loosely
structured data can be complicated. Consider the OpenEphyra question-answering
system [Schlaefer 2013]. Each query execution reduces text documents to potentially
relevant phrases by finding noun-verb answer templates within sentences.

OLDI services use large quantities of data to improve the quality of their answers. For
example, IBM Watson parsed 4TB of data for its Jeopardy competition [Ferrucci 2010].
The amount of data used by these services is growing; Wikipedia alone grew 116X from
2004 to 2011 [Wikipedia 2014]. However, large data also increases processing demands.
To keep response time low, OLDI query executions are parallelized across distributed
software components. These software components run in virtual machines distributed
across cloud infrastructure. At Microsoft Bing, query execution invokes hundreds to
thousands of components in parallel [Jalaparti et al. 2013]. Each component contributes
intermediate data that could improve answers. However, some query executions suffer
from slow-running components that take too long to complete. Since fast response time
is essential, OLDI query executions cannot wait for slow components. Instead, they
use anytime algorithms to compute answers with whatever data is available within
response time constraints [Zilberstein 1996].

OLDI services use incremental computation over whatever data is available, re-
turning the best available answers within response time constraints [He et al. 2012a;
Jalaparti et al. 2013; Meisner et al. 2011]. Parallel components can have different
processing requirements based on skew in partitioned data, but a hardware failure or
software anomaly could also cause severe performance degradation [Attariyan et al.
2012]. Returning these best available answers prevents slow parallel components from
slowing down interactive queries. However, omitting data from slow components could
degrade answer quality [Ren et al. 2013; Falsett et al. 2004]. In this article, answer
quality is the similarity between answers produced online and without omitting data
from slow components [Kelley et al. 2015]. Queries achieve high answer quality when
their execution does not suffer from slow components or when data omitted from slow
components do not affect answers. Low answer quality means that omitted data from
slow components have important contributions that would affect final answers signifi-
cantly. Prior work has shown the virtue of adaptive resource management with regard
to response time and quality of service [Spinner et al. 2014; Gandhi et al. 2014; Lama
and Zhou 2012]. Adaptive management could also help OLDI services manage answer
quality. For example, admission control traditionally performs a check before accepting
a query to determining if the system has resources available; in this context, admis-
sion control could check recent high priority queries for low quality before admitting
low-priority queries to the queue. In this way, admission control could stabilize answer
quality for high-priority queries even under time-varying arrival rates by increasing
shed of low-priority queries when answer quality drops.

Answer quality is hard to measure online because it requires two query executions.
Figure 1 depicts the process of computing answer quality. First, an online execution
provides answers within response time constraints by omitting data from slow com-
ponents. Second, we define a mature execution to use all available data relevant to
a query by waiting for all components to complete before producing mature answers.
Finally, a service-specific similarity function computes answer quality. This work uses

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:3

Fig. 1. Steps to measure answer quality online. Mature and online executions may overlap.

the true positive rate as the similarity function, but other functions are permissible,
such as normalized discounted cumulative gain [Manning et al. 2008].

Prior research ran mature executions on dedicated offline testbeds [He et al. 2011;
Kelley et al. 2013], but storage costs for offline testbeds grow as OLDI services ingest
data. Further, a service’s expected answer quality per query depends on its query mix.
Changing query mixes and data can affect answer quality online, which is difficult to
measure in offline testbeds [Kelley et al. 2013].

We present Ubora,1 a design approach to speed up mature executions. Our key insight
is that mature and online executions invoke many components with the same parame-
ters. Memoization can speed up mature executions—for instance, a mature execution
can complete faster by reusing data from its corresponding online execution instead of
reinvoking components.

When a query arrives, Ubora conducts a normal online query execution, except it
records intermediate data provided by each software component, including data not
reflected in the online answers because they were omitted from slow components. Af-
ter the slow components finish, Ubora computes mature answers using data recorded
during and after the online execution. Implementing memoization for multicomponent
OLDI services presents systems challenges. First, OLDI services span multiple soft-
ware components. It is challenging to coordinate mature and online executions across
software components without changing application-level source code. Ubora manages
mature and online operating context. During mature executions, it uses network redi-
rection to replay intermediate data from in-memory storage. Second, memoization
speeds up computationally intensive components, but its increased bandwidth usage
can also cause slowdown for some components. Ubora provides flexible settings for
memoization, allowing each component to turn off memoization. We use offline profil-
ing to determine which components benefit from memoization.

We have evaluated Ubora on four different open source OLDI services with varying
degrees of complexity and data size. To be clear, Ubora’s systems-level implementation
is able to support these applications without modification to their source code. We
compared Ubora to query tagging, which changes application source code to resume
mature execution at the point when an online execution returned a response. We also
compared timeout toggling, an approach that transparently applies the same context
across all currently executing queries. Ubora completes mature executions nearly as
quickly as query tagging with slowdown ranging from 8% to 16%. Ubora finishes mature
executions 7X faster than timeout toggling. Finally, Ubora slows down normal, online
query executions by less than 7%. We used Ubora to guide adaptive admission control.
Ubora responded quickly to changing arrival rates, keeping answer quality above 90%
during most of the trace.

This article is organized as follows. In Section 2, we put our contributions in the
context of related work. We describe the structure of OLDI services in Section 3. Sec-
tion 4 explains the motivation for our work. We present Ubora in Section 5. Section 6

1Ubora means “quality” in Swahili.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:4 J. Kelley et al.

presents our implementation of query context tracking and profiling for memoization.
In Section 7, we measure Ubora’s performance using a wide range of OLDI benchmarks.
In Section 8, we show that Ubora computes answer quality quickly enough to guide
online admission control. Section 9 concludes, and Section 10 gives details regarding
the availability of our open source Ubora implementation.

2. RELATED WORK

Ubora focuses on online systems, which trade answer quality for fast response times.
Zilberstein [1996] first characterized similar applications as anytime algorithms. Like
the OLDI workloads used with Ubora, anytime algorithms increase in result quality
as they increase in computation time. The metric Zilberstein uses that is closest to our
answer quality metric is accuracy, but he does not indicate how the exact answer is to
be reached for comparison. His work indicates that anytime algorithms should have
measurable quality, monotonically increase in quality as computation time increases,
provide diminishing returns, and produce a correct answer when interrupted. Ubora
broadens the category of applications that can use an answer quality metric beyond
anytime algorithms, not requiring that applications can suspend and resume at any
time, nor requiring that the optimal answer be determined in constant time.

2.1. Approximation for Performance

Recent work has focused on introducing approximation into existing systems to in-
crease performance [Goiri et al. 2015; Jeon et al. 2013; Jalaparti et al. 2013].

ApproxHadoop [Goiri et al. 2015] integrates sampling of input data, user-defined ap-
proximate code versions, and execution of a subset of tasks into Hadoop. ApproxHadoop
allows the user to set error bounds within a confidence interval, set a specific data sam-
pling ratio, or specify the percentage of tasks to drop to increase performance. Ubora
enables users to similarly manage resources based on the online answer quality trace.

Sequential search may terminate early on a server if the processing of the ranked
documents goes below a certain relevance. Since parallel search over the same index
will generally result in more processing per query, Jeon et al. [2013] reduces this wasted
work by keeping the order in which documents are processed sequential. Although this
is not necessary under low load, higher loads are more impacted by wasted work. The
authors adaptively change the amount of parallelism per query based on the current
system load.

Kwiken is an optimization framework for lowering tail latency in Bing [Jalaparti
et al. 2013]. Kwiken uses techniques that include allowing the return of incomplete
results, reissuing queries that lag on different servers, and increasing apportioned
resources. It calculates incompleteness as utility loss based on whether the answer
returned contains the highest-ranked document for certain stages, and in other stages
this is the percentage of parallel components that had not responded. Our work differs
from their solution in that we focus on speeding up the mature execution with which to
produce answer quality. Additionally, our framework provides for provisioning of other
resources based on answer quality.

In between executing queries, DICE uses wait time to speculatively execute the
queries most likely to be asked next and cache these results [Kamat et al. 2014]. DICE
also implements timeouts on total query execution so that even if only some of the
data is assembled in postprocessing, an answer will be available. DICE sampled data
proportionately to the most likely speculative queries found. DICE is very similar in
two ways to Ubora, in that we also use cached data from queries hidden from the user.
However, DICE uses this cached data to improve the latencies of further queries within
a user session rather than for mature executions. DICE also uses sampling to reduce
the resources spent running queries not sent by an end user.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:5

2.2. Query Tagging

One of the approaches we used to increase the maturity of answers as an alternative
to Ubora is specially tagging each query with context clues. Several recent works have
illustrated the use of query tagging for approximated workloads.

A proxy-based approach can dynamically scale quality of Web results across differ-
ent end platforms [Fox et al. 1998]. Fox et al. [1998] use lossy compression to distill
specifically typed information down to the portions with semantic value. Their proxy
adapts on demand to fit the needs of a client. The authors access mature execution
from a Web server and approximate this data to meet the needs of a range of client
platforms. We instead focus on services that provide online results and measure the
amount of approximation present.

SocialTrove tags queries with data regarding the minimum diversity expected among
the returned samples from data-intensive applications. Instead of measuring answer
quality, SocialTrove uses application-specific similarity metrics to automatically cluster
and summarize social media data [Amin et al. 2015].

He et al. [2012b] use a budget consisting of total execution time for current queries
to determine whether and how long to schedule a query. Each query is tagged with an
amount of processing time based on this budget. Their work uses a feedback mechanism
to help ensure that the desired response times are being met and an optimization
procedure to schedule based on request service demands and response quality profiles.
Their algorithm takes advantage of prior knowledge regarding the overall concave
quality profile of Microsoft Bing to estimate the individual request quality profile
rather than attempting to measure request quality with a mature execution.

Similarly, Zeta was designed to better schedule requests in online servers for high
response quality and low response quality variance [He et al. 2012a]. Zeta focuses on
online services that produce partial results under a deadline, where trading additional
computation time produces diminishing returns in additional response quality. Their
response quality, like our answer quality, uses an application-specific metric to compare
a partially executed request to a full execution. They measure their response quality
offline.

Ren et al. [2013] tag queries with deadline and arrival time to implement their
fast old and first (FOF) algorithm, which schedules incoming, unknown requests on
the fastest core available in a heterogeneous processor, then migrates requests from
slower cores to faster cores as jobs finish. They explain how heterogeneous processors
can execute long requests on faster cores and shorter requests on slow cores to achieve
high throughput and high quality. Their algorithm can improve answer quality and
throughput in heterogeneous processors as compared to homogeneous processors with
the same power budget. The authors used Bing without deadlines in a controlled setting
to produce mature executions and then used this data in their simulation study.

2.3. Timeout Toggling: Adaptive Configuration

A second approach that can be used to achieve mature executions in an online setting
is to dynamically change the configuration at the application level via argument spec-
ification. Later in this article, we compare Ubora to timeout toggling, which uses this
approach to extend query processing time.

As in our work, Kephart and Lenchner [2015] focus on OLDI computations occurring
across multiple components working together. Their system changes configuration to
maximize a utility function, then displays interpreted system responses to the user
and corrects computations when the user indicates incorrect analysis.

Our work focuses on data-intensive applications and uses application-specific simi-
larity metrics to study answer quality. Previous work has used answer quality to reduce

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:6 J. Kelley et al.

costs in cache provisioning for online, natural language applications [Kelley et al. 2013].
However, the work of Kelley et al. [2013] adapted cache configuration offline based on
answer quality.

ISPEED uses a deadline-agnostic scheduler to explore anytime algorithm workloads
without information regarding individual queries [Zheng et al. 2015]. ISPEED focuses
on maximizing total utility over all jobs in the cluster and ignores concerns regarding
individual query deadlines. In addition to the utility functions used in He et al. [2012a,
2012b], ISPEED also facilitated a user study for the Google search engine to find its
average utility function [Zheng et al. 2015].

SkewTune mitigates skew for user-defined MapReduce programs by reconfiguring
the amount of data per task online [Kwon et al. 2012]. SkewTune has similar goals
to Ubora with regard to transparency and minimal overhead for untuned queries but
dynamically redistributes data from the task expected to take the longest to complete
instead of using approximation. Our work shows that data skew is one of the motiva-
tions for approximation in OLDI services.

2.4. Adaptive Resource Allocation

Also highly related to Ubora is the area of adaptive resource allocation [Spinner et al.
2014; Gandhi et al. 2014; Lama and Zhou 2012]. Spinner et al. [2014] presented a
library for estimating resource demands with seven different approaches. Using their
library, it is possible to control how often the resource use is sampled, and when and
for how long to perform the estimate.

DC2, an autoscaling cloud service, can learn an application’s system parameters
and scale based on its understanding of resource requirements [Gandhi et al. 2014].
Without direct knowledge of the application’s needs, DC2 relies on user-specified SLA
information, virtual CPU statistics, and knowledge of request URLs to autoscale. Like
Ubora, DC2 is mostly transparent, with key information provided by the user. However,
DC2 focuses directly on autoscaling.

AROMA is an automated resource provisioning system that uses Hadoop parameter
configuration and resource allocation in a heterogeneous cloud environment to target
quality of service while minimizing cost [Lama and Zhou 2012]. Instead of directly
profiling each workload and regulating resources based on answer quality, AROMA
profiles each workload for a short time on a staging cluster before matching the work-
load’s signature to a cluster of workloads with a set of associated resources.

3. BACKGROUND ON OLDI SERVICES

Query executions differ fundamentally between OLDI and traditional Internet services.
Traditional Internet services have query executions that process all data retrieved
from well-structured databases, often via SQL (i.e., LAMP services) [Lawton 2005].
Correct query executions produce answers with well-defined structure—for instance,
answers are provably right or wrong. In contrast, OLDI queries execute algorithms that
increase in accuracy as time allows, including anytime algorithms [Zilberstein 1996].
They produce answers by discovering correlations within large quantities of data. OLDI
services produce good answers if they process data relevant to query parameters.

OLDI answers improve in quality with larger datasets. For example, IBM Watson
competed at Jeopardy using 4TB of mostly public-domain data in distributed memory
[Ferrucci 2010]. One of Watson’s data sources, Wikipedia, grew 116X from 2004 to 2011
[Wikipedia 2014]. However, it is challenging to analyze an entire large dataset within
strict response time limits. This section provides background on the software structure
of OLDI services that enables the following:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:7

Fig. 2. Execution of a single query in Apache Lucene. Adjacent paths reflect parallel execution across data
partitions.

(1) Parallelized query executions for high throughput
(2) Returning best-effort, online answers based on partial data to prevent slow software

components from delaying response time.

Parallelized query execution. Figure 2 depicts the query execution path in a service
based on Apache Lucene, a widely used open source information retrieval library [Lu-
cid Imagination 2010]. This query execution path invokes 25 software components.
Components in adjacent columns can execute in parallel. A front-end software compo-
nent manages network connections with clients, sorts results from components running
distributed search logic, and produces a running list of answers from results so far re-
ceived. This list is returned to the user. Distributed search software components parse
the query, request a wide range of relevant data from partitioned storage components,
and collect data returned within a given timeout. Data is retrieved from either (1) an
in-memory Redis cluster that caches a subset of index entries and documents for a
Lucene index server or (2) the Lucene index server itself, which stores the entire index
and data on relatively slow disks.

The Lucene service in Figure 2 indexes 23.4 million Wikipedia and New York Times
documents (pages + revisions) produced between 2001 and 2013. Queries access in
parallel Lucene indexes partitioned across multiple virtual machines. A partition is
a subset of data. Each parallel subexecution (i.e., a vertical column) computes inter-
mediate data based on its underlying partition. When intermediate data from parallel
executions over each partition are combined, they compose a query response. This in-
termediate data is combined at a software component layer that may execute many
queries in parallel, but processing for each query is done in sequential order (i.e., the
front-end node).

OLDI services also parallelize query executions via partial redundancy. In this ap-
proach, subexecutions compute intermediate data from overlapping partitions. The
query execution weights answers based on the degree of overlap and aggregate

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:8 J. Kelley et al.

Fig. 3. Experimental results with an Apache Lucene cluster. (a) OLDI components exhibit diverse processing
times. (b) Query mix increases variability. (c) Timeout policies mask variation in favor of fast response times.

data processing per partition. Consider a product recommendation service. Its query
execution may spawn two parallel subexecutions. The first finds relevant products from
orders completed in the past hour. The second considers the past 3 days. The service
prefers the product recommended by the larger (3-day) subexecution. However, if the
preferred recommendation is unavailable or otherwise degraded, the results from the
smaller parallel subexecution help.

Online answers are best effort. In traditional Internet services, query execution in-
vokes software components sequentially. The query response time depends on aggre-
gate processing times of all components. In contrast, OLDI query executions invoke
components in parallel. The processing time of the slowest component determines re-
sponse time. Figure 3(a) quantifies component processing times in our Apache Lucene
service. The query workload from Google Trends and hardware details are provided
in Section 7. Processing times vary significantly from query to query. Note that the
x-axis is shown in log scale. Lucene index servers can take several seconds on some
queries even though their typical processing times are much faster. Further, processing
time is not uniform across partitions. For example, a query for “William Shakespeare”
transferred 138KB from the partition 4 execution path but only 1KB from the partition
1 execution path. This is an instance of data skew increasing the time to process par-
titions disproportionately. Partition 4 hosted more content related to this query even
though the data was partitioned randomly.

4. MOTIVATION

Extending some timeouts is not enough to achieve mature executions. Many OLDI ser-
vices prevent slow components from delaying response time by returning answers
before slow components finish. Specifically, query executions trigger timeouts on slow
components and produce answers that exclude some intermediate data. Timeouts ef-
fectively control response time. In our Apache system, we set a 2-second and a 4-second
timeout in our front-end component. Average response time fell. In addition, third quar-
tile response times were consistently close to median times, showing that timeouts also
reduced variance. Unfortunately, query executions that trigger timeouts use less data
to compute answers. This degrades answer quality. For data-parallel queries, answer
quality degrades if the omitted data is relevant to query parameters.

Our Apache Lucene service answers mature queries too slowly to support interactive
response times. First, since query mix changes often, the resource demands of parallel
execution paths in OLDI services will vary significantly. Without excessive overpro-
visioning, some queries will inevitably have paths that require more processing time
than interactive services permit. To effect interactive response times, these paths will
execute only for a preset time before halting, which causes answer quality to vary

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:9

significantly. A second consequence arises because data growth affects data skew [Ah-
mad et al. 2008].

Impact of timeout policies. To examine the impact of timeout policies on the maturity
of online executions, we set a 3-second end-to-end timeout in our workload generator.
The front-end software component timed out connections to the distributed search soft-
ware components in 2 seconds. The distributed search software components timed out
connections to Redis and Lucene index servers in 0.8 seconds. Such layered timeouts
allow for some bounded response-time variation from components but prevent large
variation and failures from degrading end-to-end response time. We studied the impact
of layered timeouts on the maturity of online executions. Figure 3(c) plots concurrency
versus response time under this timeout policy. We compared the policy to default time-
outs, doubled timeouts, and a hybrid approach. This hybrid approach used a layered
timeout, where two Lucene software components and a Redis software component had
10X timeouts, but all others followed the default policy. Timeouts controlled response
times well, triggering best-effort results, which sped up some queries by 88X. Third
quartile response times were consistently close to median times, showing that timeouts
also reduced variance.

The hybrid approach is promising because it targets specific components and keeps
response times low, but it fails to affect the results maturity. Even though some com-
ponents had long timeouts, their executions were truncated by timeouts at higher
layers. In contrast, extending all timeouts produced mature results, but response time
increased proportionally to the timeout extension.

Taken all together, our results show timeouts control response time for online exe-
cutions effectively. Timeouts prematurely halt components affected by data skew, es-
pecially components replicated across data partitions. However, the exact components
that trigger timeouts vary at runtime. Naively extending all timeouts may produce
mature results, but this also increases average response time linearly. These lessons
influenced our system design.

Variation of mature executions. Given a query’s parameters and data partitioning
scheme, some components will be used more heavily than others. Data skew persists
despite random hashing.

Processing times on partition 4 were 2.6X slower than partition 1. For example,
queries related to the people who participated in the 2008 U.S. presidential election
pulled much more heavily from Lucene partition 2 than Lucene partition 1, reflecting
our partitioning strategy based on creation date.

We measure variation using the same query issued repeatedly and capturing the
quartile coefficient of dispersion (QCoD; QCoD =

Q3−Q1
Q3+Q1) for the response times of each

component in our system. The QCoD is a nonparametric metric like the coefficient of
variation, but it is more robust to skew caused by outliers. Smaller numbers indicate
that data is less spread out. Figure 3(b) shows that the quartile coefficient of variation
increased significantly under a mix of queries compared to reissuing the same query.
This illustrates that per-component processing times vary from query to query and
across execution paths.

The variation of mature executions has practical consequences. First, since query
mix changes often, the resource demands of parallel execution paths in OLDI services
will vary significantly. Without excessive overprovisioning, some queries will inevitably
have paths that require more processing time than interactive services permit. Those
paths will halt prematurely, causing answer quality to vary significantly. A second con-
sequence arises because data growth affects data skew [Ahmad et al. 2008]. Answer
quality may differ significantly after an OLDI service ingests new data, even if query
mix is stable. Both query mixes and data growth change online, so answer quality also

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:10 J. Kelley et al.

changes online. Query mixes are nonstationary within 5-minute and 1-hour windows
[Stewart et al. 2007]. Data growth is ubiquitous. Facebook’s Scuba ingests 1M events
per minute [Barykin et al. 2013]. TripAdvisor ingests 86K user reviews per hour [Gel-
fond 2011]. These observations support our observation that answer quality changes
dynamically.

We showed that response time variations across components and queries are present
in modern OLDI services. These variations may be caused because of query mixes and
data skew. These results indicate that it is challenging to achieve mature results online
by simply controlling a few components or workflow paths.

Ubora reduces resource needs by measuring answer quality for only randomly sam-
pled queries, reusing computation from online executions and scheduling mature exe-
cutions during low concurrency periods.

5. DESIGN

By design, Ubora measures the answer quality of online query executions by compar-
ing answers produced with and without timeouts. It reduces cost compared to other
approaches by using existing online resources and employs memoization to speed up
mature query executions. Memoization also reduces the overhead of executing ma-
ture queries online by allowing reuse of previous intermediate results from targeted
software components. Ubora further uses sampling to reduce overhead.

5.1. Design Goals

We designed Ubora around the following goals:

• Timeliness: The primary goal of Ubora is to measure answer quality quickly enough
Q1

to enable resource management based on the results. For our purposes, the challenge
was to acquire mature executions quickly from an online environment. Because query
mix changes over time, it is necessary to replay queries issued to the online service.

• Transparency: Require no code changes to software components. The secondary goal
of Ubora is to support a broad range of OLDI services composed of multiple different
software components. For this to succeed, by design we require no changes to the code
of software components used by the service. Instead of changing the services to re-
quire additional contextual information (i.e., online or mature), we use a middleware
framework that tracks query context.

• Low overhead: Online queries need to execute quickly, so we do not want slowdown.
To this end, we introduce two optimizations that reduce slowdown in online queries.
Sampling only a percentage of incoming online queries greatly reduces the overhead,
as does delaying replay when needed to avoid queuing delay with online queries.

• Low cost: Although it is possible to compute mature results offline using an online
query trace, this requires an increase in resources allotted to the service. In this
section, we present an analysis of the cost of these additional resources to motivate
why our design instead only uses resources currently available to the service.

5.2. Timeliness

Our design is mostly motivated by timeliness and transparency. We aim to overlap
the mature execution as much as possible with the online execution. Once the online
execution has completed, we keep targeted components executing in the background
until they have fully processed the online query and cache the results in distributed
in-memory storage. When we then replay the online query, we use these cached results
instead of accessing the targeted component.

Figure 4 depicts memoization in Ubora. During online query execution, Ubora records
intercomponent communication. It allows only front-end components to time out. Com-
ponents invoked by parallel subexecutions complete in the background. As shown on

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:11

Fig. 4. Memoization in Ubora. Arrows reflect messages in execution order (left to right). Dotted lines in the
online execution indicate communications that are transformed from their original purpose. Dotted lines in
the mature execution indicate communications that happen on occasion, as needed for correctness.

the left side of Figure 4, without Ubora, this example front-end component invokes
a component with a TCP payload containing a query, receives message r0, and then
times out. The front-end component then uses a FIN packet to trigger a timeout for
the invoked component, stopping its execution before completion. A dotted line in Fig-
ure 4 shows Ubora blocking the trigger from the front-end component, allowing the
invoked component to complete a mature execution. It records output messages before
and after the front-end times out, in this case r0 + r1. These messages are cached in
fast in-memory storage distributed across the least utilized machines.

With Ubora, front-end components still answer online queries within strict response
time limits. As shown in Figure 4, the front-end component uses r0 to produce an
online answer. After all subexecutions for a query complete, Ubora re-executes the
front end, as if a new query arrived. However, during this mature execution, Ubora
intercepts messages to other components and serves response messages r0 and r1 from
the cache (i.e., memoization). The cache delivers messages with minimal processing or
disk delays. During this mature execution, the front end uses both r0 + r1 to produce
a mature answer. For correctness in mature executions, Ubora may connect to the
targeted component if data is not in the fast cache. This connection is shown as dotted
lines in Figure 4.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:12 J. Kelley et al.

Mature and online results are stored in the cache. After replay completes, answer
quality is computed by callback functions or scheduled jobs. Each service may define
answer quality differently by providing its own function. Example functions include
the weighted top K, normalized discounted cumulative gain, or true positive rate. In
our experience, these functions complete quickly relative to query execution time.

5.3. Transparency

Queries execute under different contexts tracked by Ubora, depending on whether they
are online executions being recorded, normal online executions, or mature executions
being replayed. Such execution context requires coordination across distributed nodes
and concurrent queries. Memoization should be implemented differently depending on
available systems support for execution context tracking. Further, replayed executions
may steal resources from high-priority online executions. The challenge is to minimize
queuing interference.

5.4. Low Overhead

Queries issued by users or other external sources must complete quickly. For sampled
queries, a query’s online execution completes during record mode. Record mode adds
light overhead by sending messages to the cache, but importantly, most components
execute under normal timeout settings. This approach is similar to the hybrid approach
in Section 4. The query completes quickly due to layered timeouts, whereas mature
component-level executions happen asynchronously. In contrast, naively extending all
timeouts increases response times. We introduce two optimizations to keep overhead
low.

Replay mode can be postponed to reduce interference. Replays can be temporarily
postponed to avoid queuing delays with online executions, but they must finish in a
timely fashion to impact online management. Fortunately, components operate un-
der normal timeout settings during replay mode. Replay mode completes quickly and
predictably.

Sampling frequency versus slowdown and representativeness. Ubora uses sampling to
reduce the aggregate overhead of mature executions. Recall that mature executions use
a lot more resources than online executions. Services do not have enough idle resources
to complete a mature execution for every online execution. However, sampling too
infrequently can inhibit online management because answer quality is produced too
late or is not representative. The sampling rate allows managers to trade throughput
on mature executions for processing overhead.

Our design allows each service to set a sampling rate that matches its hardware
and query mixes. Online executions selected for record and replay suffer longer service
times, but unsampled queries execute normally.

5.5. Low Cost

Although it would be possible to compute mature executions on an offline testbed using
the online queries, this is a costly proposition, requiring 100% additional infrastructure
cost in the worst case. To keep the cost of measuring answer quality low, we opt to share
the resources already allocated to the service.

Memoization and replay modes redirect network traffic from nodes used to process
online queries. The approach does not require an offline testbed. Offline testbeds re-
quire costly data replication for accurate mature executions. As datasets grow, testbed
costs grow as well. Next we show that offline testbeds are expensive by analyzing the
growth of Wikipedia data.

Figure 5 shows the expected cost of our Apache Lucene setup hosting the Wikipedia
data. We studied the dataset from 2004 to 2009. In those years, the dataset size (di)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:13

Fig. 5. Annual operating costs for Apache Lucene on EC2 with Wikipedia growth rates.

grew by 130%, 150%, 110%, 70%, 40%, and 23% respectively, ending at 4TB [Wikipedia
2014]. Hard drive capacity (hi) grew at 20% annually, starting at 250MB. We used
Amazon EC2 pricing for reserved nodes ($2,400/year) and EBS storage pricing ($1.20
GB/year). We set annual inflation to 2%. The number of partitions is captured by
Equation (1). The cost for online resources (i.e., Lucene partitions (pi), four cache
instances per partition and one distributed search component per partition) is captured
by Equation (2). The least expensive cost of an offline testbed that fully replicates data
is modeled in Equation (3). It adds additional instances and doubles EBS costs but does
not include offline resources for processing. A full offline testbed with one distributed
search component and one cache cluster per partition is modeled by Equation (4).

pi =
di

hi

(1)

COnline = (6p × $2400) × 1.02i
+ (di × $1.2) × 1.02i (2)

CData = (7p × $2400) × 1.02i
+ (2 × di × $1.2) × 1.02i (3)

COffline = (9p × $2400) × 1.02i
+ (2 × di × $1.2) × 1.02i (4)

Figure 5 depicts the cost of data growth and offline testbeds. Data growth alone
would increase costs for our Apache Lucene setup by 3X between 2005 and 2009. We
note that Wikipedia’s reported hosting costs grew by 4.3X during the same period. A
full offline testbed would increase costs by 50%. An offline dataset alone would increase
costs by 18%. Further with inflation, the relative cost of an offline dataset compared to
the cost of online nodes would grow from 18% in 2004 to 22% in 2009. Record, cache,
and replay reduces operating costs by 35% compared to approaches that maintain a
full offline testbed.

Prior work proposed subsampling data to reduce costs [Kelley et al. 2013]. A sampled
dataset can only approximate the answer quality of online results. Still, an offline
testbed that samples 20% of data would increase costs by $46,000 during the period
studied.

5.6. Limitations

Timeliness of results and low overhead required our solution to occur in an online
environment. Transparency is the requirement that motivates our approach as a net-
working solution. Although a new kernel module would also have sufficed for the other
requirements, we wanted our solution to be usable out of the box for many services
and systems. It is our hope that every service that communicates between components
using a networking connection can find use in our design.

Our design approach is not fully automatic. System managers choose components
to target. We leave identifying which components to target automatically for future
work. In addition, record mode assumes that the targeted component responds to the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:14 J. Kelley et al.

component that invoked it [Song et al. 2009]. In graph and event processing systems,
the targeted component forwards data to the next node in the dataflow [Murray et al.
2013; Vlachos et al. 2010]. We also assume that request execution is read-only or
otherwise idempotent, because workloads that allow writes may have incorrect output
on replay. Finally, cached output can be used to replay only one component in the
parallel execution path of each query. Specifically, our approach produces inaccurate
results when two or more components that execute in the same sequential execution
path time out, because replay can speed up only one. Section 4 suggests that picking
components that interact with data partitions and are most affected by data skew
suffices in many cases.

6. IMPLEMENTATION

This section discusses the implementation of Ubora. First, we describe axiomatic
choices: the user interface, target users, and prerequisite infrastructure. Second, we
discuss how operating system support for transparent context tracking impacted the
implementation of memoization. Third, we provide details about our implementation
and optimizations made to keep overhead low. Finally, we discuss our approach to
determine which components constitute a front end.

6.1. Interface and Users

Ubora is designed for use by system managers. It runs on a cluster of compute nodes.
Each node runs a networked operating system with many virtual machines. Each
virtual machine runs one software component on its associated resources. To be clear,
a software component is a running binary that accepts invocations over the network.
Each software component has unique network addresses (e.g., IP address and TCP
port) assigned through its virtual machine. A cluster of nodes may run one or more
services. Each service comprises a set of software components logically arranged in
query execution flow paths yet physically distributed across one or more nodes.

System managers understand the query execution paths in their service (e.g., as
depicted in Figure 2). They classify each component as front- or back end. Front compo-
nents receive queries, record intercomponent messages, and produce online and mature
answers. They are re-executed to get mature answers. Back-end components propagate
query context, record messages, and do not time out for sampled queries. Figure 2 la-
bels the front-end component. The search tier, Redis and/or Lucene, could be front-end
or back-end components.

Ubora is started from the command line. Two shell scripts, startOnBack and start-
OnFront, are run from a front component. Managers can configure several parameters
before starting Ubora, shown in Listing 1. The query sampling rate is given in terms
of the number of mature executions to initiate per unit time. When new queries arrive
at front-end TCP ports, a query sampler randomly decides how to execute the query.
Sampled queries are executed under the record mode context shown on the left side
of Figure 4. Queries not sampled are executed normally without intervention from
Ubora. Record timeout duration sets the upper bound on processing time for a back-
end component’s mature execution. Propagate timeout is used to set the upper bound
on time to scan for newly contacted components to propagate the execution context.
To get mature answers, the query execution context is called replay mode. Finally, the
callback function used to compute answer quality is service specific. The default is the
true positive rate.

6.2. Transparent Context Tracking

A key implementation goal was to make Ubora as transparent as possible. Here, trans-
parent means that (1) it should work with existing middleware and operating systems

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:15

Listing 1. Ubora’s YAML Configuration.

without changing them and (2) it should have small effects on response times for
online queries. Transparency is hard to achieve because Ubora must manage record
and replay modes without changing the interaction between software components. In
other words, the execution context of a query must pass between components unob-
trusively. Some operating systems already support execution contexts. Therefore, we
present two designs. The first design targets these operating systems. The second de-
sign targets commodity operating systems. Our designs exploit the following features of
memoization:

1. Queries produce valid output under record, replay, and normal modes: This property
is achieved by maintaining a shadow connection to the invoked component during
replay. Cache misses trigger direct communication with invoked components. As a
result, replay, normal, and record modes have access to full data.

2. Back-end components use more resources during record mode than they use during
normal online execution because timeouts are disabled.

3. Replay mode produces mature results within normal online timeout settings since
the output of invoked components are replayed from the fast cache: Our design
schedules replay executions to avoid queuing delay.

Transparency using operating system–managed contexts. Some operating systems
track execution context by annotating network messages and thread-local memory
with context and ID. Dapper [Sigelman et al. 2010] instruments Google’s threading
libraries, Power Containers [Shen et al. 2012] tracks context switches between Linux
processes and annotates TCP messages, and Xtrace [Fonseca et al. 2007] instruments
networked middleware.

Operating system–managed execution context simplifies our design. Ubora inter-
cepts messages between components, acting as a middle box. Before delivering mes-
sages that initiate remote procedures, Ubora checks query ID and context and config-
ures memoization-related context (i.e., record or replay mode). The same checks are
performed on context switches. During record mode, when a component initiates a re-
mote invocation, we use the message and query ID as a key in the cache. Subsequent
component interactions comprise the value associated with the key—provided that the
query context and ID are matched. We split the value and form a new key when the
invoking component sends another message. Subsequent messages from the target
would provide values for the new key.

In replay mode, when an invocation message is intercepted, the message is used to
look up values in the cache. On hits, the cache returns all values that are associated
with the message. The cache results are turned into properly formatted messages (e.g.,
TCP packets) to transparently provide the illusion of a remote procedure call (RPC). On
misses, the message is delivered to the destination component as described previously.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:16 J. Kelley et al.

Transparency without operating system support. Most vanilla operating systems do
not track execution context. Without such support, it is challenging to distinguish
RPCs between concurrent queries. A universal feature of OLDI services is the use
of distributed communication between software components. Although other context-
tracking solutions are available, this network traffic is sufficient to allow transparency
with regard to both workload and underlying operating system. Ubora’s memoization
permits imperfect context management because record, replay, and normal modes yield
valid output. This feature allows us to execute concurrent queries under the same
context, but we still must ensure correctness. First, we describe a simple but broken
idea that is highly transparent, and then we present an empirical insight that allows
us to improve this design without sacrificing transparency.

In this simple idea, each component manages its current global execution context
that is applied to all concurrent queries. In addition, it manages a context ID that
distinguishes concurrent record contexts. Ubora intercepts messages between compo-
nents. When a component initiates a remote invocation in record mode, the message
and context ID are used to create a key. For the duration of record mode, intercompo-
nent messages are recorded as values for the key. If the context indicates replay mode,
the message and context ID are used to retrieve values from the cache.

This simple idea is broken because all messages from the invoked component are
recorded and cached, including concurrent messages from different queries. In replay
mode, those messages can cause wrong output. Our key insight is that record mode
should use replies from the invoked component only if they are from the same TCP
connection as the initiating TCP connection. The approach works well as long as TCP
connections are not shared by concurrent queries. Widely used paradigms like TCP con-
nection pooling and thread pooling are ideal for use with Ubora. We studied the source
code of 15 widely used open source components, including JBoss, LDAP, Terracotta,
Thrift, and Apache Solr. Only two (13%) of these platforms multiplexed concurrent
queries across the same connection. This suggests that our transparent design can be
applied across a wide range of services. We confirm this in Section 7.4.

Next we describe how to propagate request context, which is necessary when the
operating system does not support execution contexts. On a front component, the Ubora
controller waits for queries to arrive on a designated TCP port. If a query is selected
for mature execution, the Ubora controller changes the front component context from
normal to record and create a context ID. Before sending any TCP message, we extract
the destination component. If the destination has not been contacted since record mode
was set, the Ubora controller sends a UDP message to tell the Ubora daemon running
on that component to enter record mode and forwards the proper context ID. Then we
send the original message. Note that UDP messages can fail or arrive out of order. This
causes the mature execution to fail. However, we accept lower throughput (i.e., mature
executions per query) when this happens to avoid increased latency from TCP round-
trips. Middle components propagate state in the same way. Each component maintains
its own local timers. After a propagation timeout is reached, the context ID is not
forwarded any more. After the record timeout is reached, each component reverts back
to normal mode independently. We require front components to wait slightly longer
than record timeout to ensure that the system has returned to normal.

6.3. Prototype

We implemented transparent context tracking as described earlier for the Linux 3.1
operating system. The implementation is installed as a user-level package written in
C and requires the Linux Netfilter library to intercept and reroute TCP messages. It
uses IPQueue to trigger context management processes. It assumes that components

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:17

communicate through RPCs implemented on TCP and that an IP address and TCP
port uniquely identify each component. It also assumes that timeouts are triggered by
the RPC caller externally—not internally by the called component.

Ubora also implements a user-level controller that changes a node’s operating mode
to record, replay, or normal. A single-writer but globally readable file holds the current
operating mode on each node. In normal mode, rules regarding targeted components
and query detection are disabled.

Recording network payloads. Our approach records messages sent from targeted com-
ponents during live execution. First, headers are matched against rules about (1) iden-
tifying targeted components, (2) new queries, and (3) Ubora control. Packets that do
not match these rules are accepted (more precisely, they are not redirected). Second, we
keep TCP connections to targeted components open after timeouts to obtain messages
excluded from premature results. Ubora extends timeouts transparently by blocking
FIN packets sent to the targeted component and spoofing ACKs from the caller. Mes-
sages from the targeted component that arrive after a blocked FIN are cached but not
delivered to the caller. This continues until record times out or the targeted component
sends a message to end the connection. Then, the entire recorded payload from the
targeted component is stored as a value in Ubora’s cache, with the query payload from
the caller that invoked this output as its key. Whereas we delineate between key-value
pairs by default using either FIN packets or the next inbound message to a component,
service managers can specify alternate, application-specific data payloads to use for
this purpose. This is especially important for workloads that use connection pooling
with collated requests separated by special characters. We then separate messages us-
ing these application-specific termination payloads. Service managers can specify this
in the configuration file. Packets are parsed in two stages.

Distributed cache. Naively limiting our storage usage to a single node increases aver-
age response time by increasing that storage node’s network bandwidth and decreasing
the amount of data used by the host application that can be stored. Instead, we allow
system administrators to volunteer a list of nodes on which to store recorded message
pairs. Recorded message pairs can be matched to nodes by a random hash, decreasing
network bandwidth for bandwidth-intensive applications.

We use a distributed Redis cache for in-memory key-value storage. Redis allows us
to set a maximum memory footprint per node. The aggregate memory across all nodes
must exceed the footprint of a query. By using only a small percentage of the cache on
each of allowed nodes, we minimize the overall cache miss rate overhead. Our default
setting is an aggregate 1GB. In addition, Redis can run as a user-level process even if
another Redis instance runs concurrently, providing high transparency.

We want to minimize the overhead in terms of response time and cache miss rate.
Each key-value pair expires after a set amount of time. Assuming a set request rate,
cache capacity will stabilize over time. A small amount of state is kept in local in-
memory storage on the Ubora control unit node (a front node). Such state includes
sampled queries, online and mature results, and answer quality computations.

Replay. When we rerun the cached query, we spoof the targeted components using
recorded messages. Replayed queries bypass processing and I/O delays on targeted
components, returning results at network speed. If a packet is headed for the targeted
component, the packet is intercepted, and Ubora accesses its cache for the requested
key-value pair associated with the data payload. The value is sent back to the source
address if the key is found in the cache. If nothing is found, the data payload is sent
to the targeted component for correctness. For correctness, when a key is not found in

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:18 J. Kelley et al.

the Ubora cache or the Ubora cache develops a fault, we also open a real connection to
the targeted component and send the data payload.

Ubora’s memoization approach meets the criteria outlined earlier. Other designs that
we studied do not. For example, a system could measure answer quality by replaying
queries on an offline testbed. This would violate our goal of using only online resources
[Kelley et al. 2013]. A system could measure answer quality online by rewriting sys-
tem components to support query-specific timeouts as in Bing [Jalaparti et al. 2013;
He et al. 2012a]. However, this would require recoding software platforms. Finally, a
system could simply change timeouts for each component dynamically. However, lay-
ered timeouts would force such changes to cover whole workflows (i.e., no incremental
deployment). This would hurt response times for all live queries.

6.4. Optimizations for Low Overhead

Context tracking. Ubora reduces bandwidth required for context propagation. First,
Ubora propagates context only to components used during online execution. Section 7.4
demonstrates that the increase in packets touched is more than compensated for in the
decrease of Ubora network traffic during mode changes.

Second, Ubora does not use bandwidth to return components to normal mode, only
sending UDP messages when necessary to enable record or replay mode. The naive
context propagation sends messages for all context switches, including return to normal
mode. Timeouts local to each component ensure that the system fully returns to normal
mode, regardless of any lost UDP messages. Timeouts therefore increase robustness to
network partitions and congestion. Front components time out after other components
so that the entire system will have returned to normal mode before another mode
change is issued.

Reducing replay overhead. To keep response times low, online services underutilize
systems resources [Meisner et al. 2009, 2011]. Replay executions increase utilization on
middle components. After record completes, Ubora queues the context ID on the front
component for replay. The expected time to complete queued replays is the product
of queue size and average online execution time. Naively, Ubora replays queries for
mature execution as soon as possible after the record mode completes.

However, we have reduced replay overhead by using two further factors to decide
when to replay queries. First, replay queries must execute within a short window after
online queries finish to be useful to online management. This expiration window is set
by system managers. If the time to clear the queue exceeds the remaining expiration
window, Ubora initiates replays. Otherwise, replays are initiated if (1) there are no
outstanding online queries and (2) the average interarrival time for online queries
exceeds the time to replay. If these conditions are met, we replay the first query in the
queue.

Second, by caching results without expiration, Ubora can run replay executions over a
window of time after initial live executions. The value of delaying replay is that replay
can be done when queuing delay is low, reducing the impact of replay on response
times of other live executions. If services have frequent idle periods between queries,
Ubora can schedule replays during such time. Meisner et al. [2009] found that such
services idle about 70% but for less than 5ms at a time. Ubora can be set to read queue
lengths at front-end nodes and schedule replays when queue length is below the 25th
percentile.

Sampling. Mature results do not directly contribute to end-user satisfaction. Naively
collecting mature results for each query would reduce an OLDI service’s throughput
by more than 50%. Ubora allows managers to specify stochastic sampling rates to
determine when to compute a mature result.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:19

We also use a node sampling optimization for applications with intensive data reuse.
When this is used, recorded message pairs are stored on the node with the lowest
Ubora storage footprint.

6.5. Determining Front-End Components

Thus far, we have described the front end as the software component at which queries
initiate. Its internal timeout ensures fast response time, even as components that
it invokes continue to execute in the background. To produce an online answer, the
front end must complete its execution. Ubora re-executes the front end to get mature
answers. Ubora cannot apply memoization to the front-end component.

At first glance, re-execution seems slower than memoization. However, as shown
in Figure 3(a), many components execute quickly. In some cases, execution is faster
than transferring intermediate data to the key-value store. Our implementation al-
lows for a third class of component: middle components. Like front-end components,
middle components are allowed to time out. They are re-executed in replay mode with-
out memoization. Unlike front-end components, middle components do not initiate
queries, but they can invoke targeted components and can be the target of memoiza-
tion. In Figure 2, distributed search or Redis components could be labeled as middle
components.

Given a trace of representative queries, Ubora determines which components to mem-
oize by systematically measuring throughput with different combinations of front-,
middle-, and back-end components. We do the same to determine the best sampling rate.

7. EXPERIMENTAL EVALUATION

In this section, we compare Ubora to alternative designs and implementations across a
wide range of OLDI workloads. First, we discuss the chosen metrics of merit. Then, we
describe the competing designs and implementations. Next, we present the software
and hardware architecture for the OLDI services used. Finally, we present experimen-
tal results.

7.1. Metrics of Merit

Ubora speeds up mature query executions needed to compute answer quality. The re-
search challenge is to complete mature query executions while processing other queries
online at the same time. The primary metric used to evaluate Ubora’s performance
(throughput) is mature executions completed per 100 online executions.

Mature executions use resources otherwise reserved for online query executions,
slowing down response times. Online queries that Ubora does not select for mature
execution (i.e., unsampled queries) are slowed down by queuing delays. We report
slowdown as the relative increase in response time. In addition to queuing delay,
online queries sampled for mature execution are also slowed down by context tracking
and memoization.

Finally, we used true positive rate (i.e., the percentage of mature results represented
in online results) to compute answer quality.

7.2. Competing Designs and Implementations

Ubora achieves several axiomatic design goals. Specifically, it (1) speeds up mature
executions via memoization, (2) uses a systems approach that works for a wide range
of OLDI services, (3) supports adjustable query sampling rate, and (4) implements
optimizations that reduce network bandwidth usage. Collectively, these goals make
Ubora usable. Our evaluation compares competing designs that sacrifice one or more
of these goals. They are listed in the following with an associated codename that will
be used to reference them in the rest of the article:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:20 J. Kelley et al.

Table I. OLDI Workloads Used to Evaluate Ubora Supported Diverse Data Sizes and Processing Demands

Code- Parallel Data

name Platform Paths (GB) Nodes Maturity Utilization QCoD

YN.bdb Apache Yarn 2 1 8 96% 46% 8%

LC.news Lucene 1 4 4 82% 73% 13%

LC.wik Lucene 4 128 31 20% 23% 53%

LC.big Lucene 4 4,096 31 10% 40% 55%

ER.fst EasyRec 2 2 7 75% 15% 89%

OE.jep OpenEphyra 4 4 8 5% 20% 56%

• Ubora implements our full design and implementation. The sampling rate is set to
maximize mature query executions per online query.

• Ubora-LowSamples implements our full design and implementation but lowers the
sampling rate to reduce slowdown.

• Ubora-NoOpt disables Ubora’s optimizations. Specifically, this implementation dis-
ables node-local timeouts that reduce network bandwidth usage.

• Query tagging and caching essentially implements Ubora at the application level.
Here, we implement context tracking by changing the OLDI service’s source code
so that each query accepts a timeout parameter. Further, we set up a query cache
to reuse computation from online execution. This approach is efficient but requires
invasive changes.

• Query tagging implements context tracking at the application level but disables
memoization.

• Timeout toggling eschews both context tracking and memoization. This implemen-
tation increases each component’s global timeout settings by 4X for mature execu-
tions. All concurrent query executions also have increased timeout settings. This is
noninvasive because most OLDI components support configurable timeout policies.
However, extending timeouts for all queries is costly.

7.3. OLDI Services

Table I describes each OLDI service used in our evaluation. In the rest of this article,
we refer to these services using their codename. The setup shown in Figure 2 depicts
LC.big, a 31-node cluster that supports 16GB DRAM cache per terabyte stored on disk.
Each component runs on a dedicated node comparable to an EC2 medium instance,
providing access to an Intel Xeon E5-2670 VCPU, 4GB DRAM, 30GB local storage, and
(up to) 2TB block storage:

• YN.bdb uses Hadoop/Yarn for sentiment analysis. Specifically, it runs query 18 in
BigBench, a data analytics benchmark [Ghazal et al. 2013]. Each query spawns
two parallel executions. The first subexecution extracts sentiments from customer
reviews over 2 months. The second covers 9 months. The 9-month execution returns
the correct answer, but the 1-month answer is used after a 3-minute timeout. Each
subexecution flushes prior cached data in HDFS, restores a directory structure, and
compresses its output. As a result, query execution takes minutes, even though
customer reviews are smaller than 1GB. The average response time without timeout
is 3 minutes; 44% of queries get the 9-month answer within timeout. We mainly
include YN.bdb to show that Ubora can capture answer quality for longer-running
services as well.

• LC.big, LC.wik, and LC.news use Apache Lucene for bag-of-words search. All of these
workloads replay popular query traces taken from Google Trends.
LC.news hosts 4GB of news articles and books on a Redis cluster with 4GB DRAM.
LC.news implements one of the four parallel paths shown in Figure 2. It returns the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:21

best answer produced within 1 second. Without timeouts, the average response time
is 1.22 seconds. More than 83% of LC.news queries complete within the timeout.

LC.wik hosts 128GB of data from Wikipedia, New York Times, and TREC NLP
[Technology Laboratory’s (ITL) Retrieval Group 2014]. After executing warm-up
queries, the data mostly fits in memory. We set timeout at 3 seconds. Without the
timeout, response time was 8.9 seconds; 39% of the LC.wik queries complete within
the timeout.

LC.big hosts 4TB. Most queries access disk. Average response time without timeout
is 23 seconds. The timeout is 5 seconds.

• ER.fst uses the EasyRec platform to recommend Netflix movies. It compiles two rec-
ommendation databases from Netflix movie ratings [Netflix 2009]: a 256MB version
and a 2GB version. Each query provides a set of movie IDs that seed the recommen-
dation engine. The engine with more ratings normally takes longer to respond but
provides better recommendations. Query execution times out after 500ms; 80% of
query executions produce the 2GB answer.

• OE.jep uses OpenEphyra, a question-answering framework [Schlaefer 2013]. OpenE-
phyra uses bag-of-words search to extract sentences in the AQUAINT-2 NLP dataset
related to queries from the TREC trace [Technology Laboratory’s (ITL) Retrieval
Group 2014]. It then compares each sentence to a large catalog of noun-verb tem-
plates, looking for specific answers. The workload is computationally intensive. The
average response time in our setup was 23 seconds. Motivated by the responses times
for IBM Watson, we set a timeout of 3 seconds [Ferrucci 2010]; fewer than 15% of
queries completed within timeout.

We set up a workload generator that replayed trace workloads at a set arrival rate
for each workload. The goal was to keep a concurrency level of 1 at the top-level node.
Based on averaging the CPU utilization for all of the nodes used in a workload, our
workload generator kept CPU utilization between 15% and 35% overall.

Table I also displays numerical characteristics that illustrate the diversity of our
tested workloads, including utilization, the quartile coefficient of distribution, and ma-
turity. The utilization shown for each workload is defined as ArrivalRate

ProcessingRate
. The arrival

rate and processing rate used in this calculation were measured for each workload
without turning on Ubora. As utilization increases, Ubora is challenged to achieve
memoization and replay without creating too much queuing delay. Table I also shows
the quartile coefficient of distribution for the response times of target components in
each workload. Finally, we define maturity as the ratio between average online query
execution time (affected by premature timeouts) and mature execution time. Greater
maturity allows less time for mature executions to differ from online executions. These
values are computed offline and are used here to characterize the workload. Our ser-
vices have diverse CPU% and IO% (not shown). This stems from the wide range of
data and cluster sizes covered. Taken together, our services represent many OLDI
workloads.

7.4. Results

Microbenchmark tests. Our first test studied the effect of data skew and component se-
lection. For this, we used a microbenchmark consisting of three software components,
a front component that accepts queries, and two auxiliary components. Each query
randomly selected one auxiliary component to have a running time X% longer than the
other. Here, X% approximates data skew. The output of each auxiliary component is its
running time, and the microbenchmark’s output is the largest observed running time.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:22 J. Kelley et al.

Fig. 6. Microbenchmark study on the effects of component selection on accuracy and Ubora mechanisms
on overhead under changing data skew. Data skew represents the difference in running times between two
auxiliary components.

The front component times out after the shortest component completes (100ms). We is-
sued 10,000 queries to this microbenchmark one after another (e.g., 10 queries/second).

The left axis of Figure 6 shows the accuracy of mature results in this test—that
is, the relative error between the time given by our mature results and the running
time of the slowest component. We report average error. The top dotted line, labeled
Both Components, shows results when both auxiliary components are targets. The
dashed line shows results when only one auxiliary component is a target. When both
components are targets, accuracy ranges between 96% and 99%. However, the Single
Component line warns about the perils of selecting targets poorly. Consider the extreme
case where the shortest component runs for 100ms and the longest runs for 200ms. If
the wrong component (in this case, the shorter-running component) is selected, the best
possible accuracy is 50%. Record and replay overheads cause further degradation. On
the right axis of Figure 6, we report slowdown (i.e., increase in response time) caused
by record mode and replay mode, respectively, in the Both Components experiment.
Record mode includes the cost of redirecting network messages to cache. Its overhead
is around 1%. Replay mode includes the cost of extending timeout for the long-running
component and the cost of queuing delays to replay executions. The slowdown grew
by 1.8% per 10% increase in data skew. Effectively, this means that we reduced the
amount of time needed to perform a mature execution by 5.5X. These tests show that
our record and replay mechanism are implemented efficiently.

Comparison to competing approaches. Figure 7 compares competing approaches in
terms of mature executions completed per 100 online queries. For these experiments, we
set the sampling rate to record approximately 40 queries out of every 100. Ubora-NoOpt
reveals that node-local timeouts and just-in-time query propagation collectively reduce
the overhead of sampling, improving the throughput of mature execution completions
by 1.6X, 1.3X. and 2.1X, respectively. ER.fst has relatively fast response times that
require messages to turn off record and replay modes. Node-local timeouts reduce
these costs. Internal component communications in LC.big and LC.wik also benefit
from node-local timeouts.

Excluding Ubora, the other competing approach that can be implemented for a wide
range of services is toggling timeouts. Unfortunately, this approach performs poorly,
lowering throughput by 7 to 8 X. To explain this result, we use a concrete example of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:23

Fig. 7. Experimental results. Ubora achieves greater throughput than competing systems-level approaches.
It performs nearly as well as invasive application-level approaches (within 16%).

a search for “Mandy Moore” in LC.big. First, we confirm that both Ubora and toggling
timeouts produce the same results. They produce the same top 5 results, and 90% of the
top 20 results overlap. Under 5-second timeout, the query times out prematurely, out-
putting only 60% of top 20 results. Ubora completes mature executions faster because
it maintains execution context. This allows concurrent queries to use different time-
out settings. Queries operating under normal timeouts free resources for the mature
execution. Further, per-component processing times vary within mature executions
(recall Figure 3(a)). By maintaining execution context, Ubora avoids overusing system
resources. For the “Mandy Moore” query, Ubora’s mature execution took 21 seconds
in record mode and 4 seconds in replay mode. Conversely, under the toggle timeouts
approach, service times for all concurrent queries increased by 4X, exceeding system
capacity and taking 589 seconds.

We also compared our systems-level implementation of Ubora, which strives to trans-
parently support a wide range of services, to application-level approaches. For these
experiments, we maximize throughput for Ubora on ER.fst. Based on this curve, in Fig-
ure 9(a) (shown later), we set the sampling rate to 20% for all approaches. Application-
level approaches can track query context efficiently by tagging queries as they traverse
the service [Fonseca et al. 2007]. Specifically, we modified LC.big, LC.news, and ER.fst
to pass query context on each component interaction. Further, we implemented a query
cache for targeted query interactions [Amza et al. 2005; Guo et al. 2013; Paiva et al.
2013]. Our cache uses Ubora’s mechanism for memoization but tailors it to specific
intercomponent interactions and context IDs. As such, our application-level approach
is expected to outperform Ubora, and it does. However, Ubora is competitive, achieving
performance within 16% on all applications. We also compared to a simple application-
level approach that disables query caching. This approach shows that memoization
improves throughput by 1.3X on LC.big, 1.7X on LC.news, and 2.5X on ER.fst. The
benefit provided by memoization is correlated with the ratio of mature execution times
to online execution times. In ER.fst, mature executions are mostly repeating online
executions.

Impact on response time. Ubora allows system managers to control the query
sampling rate. Figure 8(a) compares the throughput rate (mature executions per
100 queries) for Ubora with and without optimizations for different sampling rates.
Our optimizations improve throughput for LC.big by 2X at the 40% sampling rate.

In contrast, Ubora-LowSamples only replays queries when the interarrival time is
high. This slight reduction in the sampling rate can still achieve high throughput. How-
ever, this approach significantly reduces Ubora’s effect on response time. Figure 8(b)
shows the slowdown caused by the Ubora-LowSamples approach across all tested work-
loads. By executing mature executions in the background and staying within processing
capacity, we achieve slowdown below 13% on all workloads for unsampled queries and

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:24 J. Kelley et al.

Fig. 8. Impact on response time. (a) Throughput under varying sampling rate for Ubora and Ubora-NoOpt.
(b) Ubora delayed unsampled queries by 7% on average. Sampled queries were slowed by 10% on average.

Fig. 9. Experimental results for maximized throughput with ER.fst. (a) We profiled sampling options. (b)
We profiled memoization options. (c) Timeout settings have complex, application-specific affects on answer
quality.

below 10% on four of six workloads for sampled queries. OpenEphyra and LC.big incur
the largest overhead because just-in-time context interposes on many intercomponent
interactions due to cluster size. For such workloads, operating system–level context
tracking would improve response time for sampled queries.

Collectively, the five workloads shown use nine platforms, including the widely used
Apache Lucene, EasyRec Recommendation Engine, OpenEphyra, and NanoWeb PHP
server. In general, the variance of mature execution times (i.e., QCoD) correlates posi-
tively to the throughput achieved by each workload. The target components in EasyRec
workloads in particular have the greatest QCoD. EasyRec workloads yield throughput
about 50% relative to other workloads. Higher utilization levels were associated with
greater slowdown on unsampled queries, reflecting queuing delay. We also observed
less slowdown on ER.fst. This workload had higher maturity and low utilization, which
limits the potential for slowdown.

Impact of profiling. Figure 9(a) and (b) study our approach to determine sampling
rate and front-end components (i.e., memoization). We studied the ER.fst workload.
Figure 9(a) shows the achieved throughput (mature executions per 100 queries) as the
percentage of mature executions initiated increases. Figure 9(b) shows the achieved
throughput as the percentage of components included as the front end of middle compo-
nents increases. For the ER.fst workload, it is better to apply memoization to many com-
ponents. The 20% sampling rate for Ubora-LowSamples on ER.fst maximized through-
put.

The peak sampling rate corresponds to 12 queries per minute. Because the requests
for LC.news took longer, the peak sampling rate for Figure 8(a) corresponded to 1 query
per minute. First, we observe that under Ubora-LowSamples, the failure rate increases
with the sampling rate. This is due to expired cache entries and the potential for

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:25

Fig. 10. Some hardware counters predict answer quality.

additional time between memoization and replay. Under a 20% sampling rate, 17% of
mature execution fail to yield mature results. This rises to 84% at an 80% sampling
rate. Figure 8(a) agrees with this rise, with 30% of mature executions failing to yield
mature results at 60% of the sampling rate. Peak throughput is achieved at the cost
of efficiency. We also observe that Ubora’s optimizations collectively lead to significant
throughput gains across sampling rates.

Studying answer quality: Figure 9(c) shows answer quality (i.e., the true positive
rate) as we increase timeout settings. For LC.news and ER.fst, we increase timeouts
at front-end components. We also validate our results by increasing timeouts in an
unrelated component in ER.fst (static). We observe that answer quality is stable in
the static setting. Further, answer quality curves differ between applications. After
timeout settings reach 600ms for LC.news and 300ms for ER.fst, the curves diverge
and answer quality increases slowly for ER.fst. Finally, answer quality curves have
two phases in LC.news and three phases in ER.fst. It is challenging to use timeouts to
predict answer quality.

Using hardware counters to improve sampling. Online executions that complete with-
out triggering timeouts make mature executions unnecessary. Ubora may further re-
duce its overhead by turning off memoization and replay when it predicts that online
executions will complete fully. Prior work has shown that hardware counters are useful
predictors of query outcomes. We studied whether hardware counters collected early
in a query execution can be used to predict answer quality in LC.big. For this test,
we used the Google trace and issued queries one at a time under a tighter timeout (3
seconds). We collected level-1 (L1) cache misses, level-2 (L2) cache misses, and transla-
tion look-aside buffer (TLB) misses every second. Figure 10 shows hardware counters
after the first third of query execution and across the whole query execution. The fig-
ure shows the results of low-quality queries relative to the results for high-quality
queries. We observed that the ratio of L2 misses and TLB misses on cache nodes were
markedly higher in cache nodes. These predictors detect high-quality queries quickly
enough to prevent mature executions (if the query had been sampled). In LC.big, this
approach has the capacity to reduce mature executions by a further 60%, doubling
Ubora’s throughput.

For our Apache Lucene search engine, this makes sense as TLB misses often mean
that a slow Lucene disk will have more lookups and that the query will likely time out.

8. ONLINE MANAGEMENT

OLDI services use anytime algorithms, returning valid results even when provisioned
to provide target response times. In addition to classic metrics like response time,
these services could use answer quality to manage resources. We show here that Ubora

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:26 J. Kelley et al.

Fig. 11. Ubora enables online admission control. Arrival rate refers only to low-priority requests. High-
priority requests arrive at a fixed rate.

enables better resource management through answer quality. In this case study, we
use Ubora to improve admission control, a classic system management challenge.

Control theory with answer quality. We studied admission control on the LC.big
workload. We issued two classes of queries that arrived at different TCP ports, indi-
cating high and low priority. High-priority requests arrived at a fixed rate in terms
of requests per second. We used diurnal traces from previous studies [Stewart et al.
2007, 2013] to issue low-priority requests. At the peak workload, low- and high-priority
arrival rates saturate system resources (i.e., utilization is 90%). Figure 11(a) shows the
Arrival Rate of low-priority queries over time as well as the number of low-priority
search requests admitted. We used Ubora to track answer quality for high-priority
queries. Here, answer quality is the true positive rate for the top 20 results. At the 45-
minute and 2-hour marks, the query mix shifts toward multiple word queries that take
longer to process fully. This accounts for the drops in answer quality for the No Shar-
ing line in Figure 11(b). When quality dipped, we decreased the admission control rate
on low-priority queries. Specifically, we used a proportional-integral-derivative (PID)
controller. Every 100 requests, we computed answer quality from 20 sampled queries
(20% sample rate). The PID controller used 10-minute sliding windows to average out
spikes in answer quality and timeout frequency. The PID controller weighted current
reading at 40% (i.e., proportional portion).

The y-axis of Figure 11(b) shows answer quality of competing admission control
approaches. When no low-priority queries are admitted, the No Sharing approach
maintains answer quality above 90% throughout the trace, even during periods with
complex queries. When admission control is disabled, the Full Sharing approach sees
answer quality as low as 20%, corresponding with peak arrival rates. The PID controller
powered by Ubora manages the admission rate well, keeping answer quality above

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:27

Table II. Adaptive Management Degrades Under Low Sampling Rates

Measurement Error for Answer Quality

Sampling Rate Average 95th Percentile Rate of Quality Violations

10% 0% 0% 4%

5% 20% 45% 9%

3% 30% 50% 13%

2% 51% 78% 29%

Note: A quality violation is a window where answer quality falls below 90%. Error is relative to
the 10% rate.

90% in more than 90% of the trace. There is about a 20% drop in answer quality for
the UBORA PIDcontroller approximately at the point in time where the query mix
increases in complexity. The drop in UBORA TPUT occurs concurrently with this,
indicating that the amount of low-priority queries shed to counter this drop increased.
It allows almost 60% of low-priority queries to complete (Ubora (TPUT)).

The state of the art for online management in OLDI services is to use proxies for
the answer quality metric. Metrics like the frequency of timeouts provide a rough
indication of answer quality and are easier to compute online [Jalaparti et al. 2013].
For comparison, we implemented a PID controller that used frequency of timeouts
instead of answer quality. We tuned the controller to achieve answer quality similar to
the controller based on answer quality. However, timeout frequency is a conservative
indicator of answer quality for Lucene workloads. It assumes that partial results caused
by timeouts are dissimilar to mature results. Figure 11(a) also shows that the controller
based on timeout frequency (TO Freq (TPUT)) drops requests too aggressively. Queries
can only be dropped explicitly in our system, so both TO Frequency and Ubora PID
controllers achieve full throughput on high-priority requests. For most of the trace, the
Ubora PID controller has a higher throughput on low-priority requests than TO Freq.
When arrival rate increases, both Ubora and TO Frequency controllers admit fewer
low-priority queries. The TO Freq PID controller is consistently more conservative than
Ubora PID. The TO Frequency PID controller only allowed 25% of low-priority queries
to complete. Compared to the TO Frequency PID controller’s peak throughput over
the whole trace, our Ubora PID controller improved peak throughput on low-priority
queries by 55%.

Sampling rate and representativeness. Ubora allows reducing the overhead of mature
executions by sampling online executions. This lowers mature results per query, but
how many mature results are needed for online management? Table II shows the effect
of lower sampling rates on the accuracy of answer quality measurements and on the
outcome of adaptive admission control. We observed that sampling 5% of online queries
significantly increased outlier errors on answer quality, but our adaptive admission
control remained effective—it still achieved greater than 90% quality over 90% of the
trace. In contrast, a 2% sampling rate produced many quality violations.

9. CONCLUSION

OLDI queries have complex and data-parallel execution paths that must produce re-
sults quickly. Data used by each query is skewed across data partitions, causing some
queries to time out and return premature results. Answer quality is a metric that
assesses the impact of timeouts on the quality of results. It is challenging to com-
pute online because it require results from mature executions that are unaffected by
timeouts.

This article describes Ubora, a design approach to speed up mature executions by
reusing intermediate computations from online queries (i.e., memoization). Ubora
adopts a challenging systems-level approach that allows us to measure answer quality

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:28 J. Kelley et al.

for a wide range of services. Our implementation includes novel context tracking for
commodity operating systems and bandwidth optimizations. The evaluation shows
that Ubora produces mature results faster than competing transparent approaches
and nearly as fast as a less flexible, application-specific approach.

We evaluated Ubora on Apache Lucene with Wikipedia data, OpenEphyra with New
York Times data, EasyRec recommendation engine with Netflix data, and Hadoop/Yarn
with BigBench data [The Apache Software Foundation 2015, 2016; Wikimedia
Foundation 2014; Schlaefer 2013; Technology Laboratory’s (ITL) Retrieval Group 2014;
Research Studios Austria Forschungsgesellschaft mbH 2014; Netflix 2009; Intel Cor-
poration 2016]. Ubora slows down normal query executions by less than 7% on average.
Ubora completes mature executions almost as quickly as query tagging, which eschews
transparency for efficiency, with slowdown ranging from 8% to 16%. We also compared
Ubora to timeout toggling, an alternative approach that does not require changing
application source code if the allowed processing time is a configuration setting for
the application. However, under this approach, all currently executing queries operate
under the same context. Ubora exhibited a 7X speedup in finishing mature executions
over timeout toggling.

Most importantly, Ubora produces answer quality quickly enough to enhance on-
line system management. We used Ubora to guide online management, increasing
throughput compared to offline approaches. We adaptively shed low-priority queries
to our Apache Lucene and EasyRec systems. The goal was to maintain high answer
quality for high-priority queries. Ubora provided answer quality measurements quickly
enough to detect shifts in the arrival rate and query mix. The other transparent ap-
proach to measure answer quality (i.e., toggling timeouts) produced mature executions
too slowly. This approach allowed answer quality to fall below 90% 12X much more of-
ten than Ubora. We also used component timeouts as a proxy for answer quality [Jala-
parti et al. 2013]. This metric is available after online executions without conducting
additional mature executions. As a result, it has much lower overhead. However, com-
ponent timeouts are a conservative approximation of answer quality because they do
not assess the effect of timeouts on answers. While achieving the same answer quality
on high-priority queries, Ubora-driven admission control improved peak throughput
on low-priority queries by 55% compared to admission control powered by component
timeouts.

We also studied the predictive power of hardware counters to answer quality on
Redis, a key-value store we used with the Lucene workload [Redislabs 2016; The Apache
Software Foundation 2016]. Predictive hardware counters enable preemptive actions,
such as extending timeouts before they are triggered. We counted L1 cache misses,
L2 cache misses, and TLB misses during periods with high (>90%) and low answer
quality. After executing 10% of a query, L2 misses for Redis were good predictors of
low-quality answers. However, their predictive power varied across components.

We believe that the transparent design of Ubora can be of use to future frameworks
aiming to share context among a cluster of machines. Custom, hand-coded approaches
could possibly achieve similar gains, but Ubora can help a wide range of multicompo-
nent services, including outreach efforts, as in Muhammad et al. [2016]. In the future,
we intend to use Ubora to dynamically tune cache size in the OpenEphyra question-
answering system to support science, technology, engineering, and mathematics out-
reach. We are developing a unit to teach big data and natural language processing
using Ubora to facilitate a classroom game where students compete against an online
question-answering service. By dynamically allocating or reducing cache size to match
its competitors knowledge base, it is our hope that the OpenEphyra question-answering
system will be able to adequately compete with people of multiple age ranges across
a broad range of knowledge categories. Our conclusion is that Ubora democratizes

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:29

answer quality, allowing many services to provide high-quality results and fast re-
sponse times.

10. CODE AVAILABILITY

The source code for Ubora is available at https://github.com/JaimieKelley/ubora/. We
will also share file system images of our OLDI workloads.

REFERENCES

Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. 2008. Modeling and exploiting
query interactions in database systems. In Proceedings of the 17th ACM Conference on Information and
Knowledge Management.

M. T. A. Amin, S. Li, M. R. Rahman, P. T. Seetharamu, S. Wang, T. Abdelzaher, I. Gupta, M. Srivatsa, R.
Ganti, R. Ahmed, and H. Le. 2015. SocialTrove: A self-summarizing storage service for social sensing.
In Proceedings of the 2015 International Conference on Autonomic Computing.

Cristiana Amza, Gokul Soundararajan, and Emmanuel Cecchet. 2005. Transparent caching with strong
consistency in dynamic content Web sites. In Proceedings of the 19th Annual International Conference
on Supercomputing. ACM, New York, NY, 264–273.

Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating root-cause diagnosis of perfor-
mance anomalies in production software. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (OSDI’12). 307–320.

Oleksandr Barykin, Bhuwan Chopra, Ciprian Gerea, Josh Metzler, Subbu Subramanian, Janet Wiener, David
Reiss, and Daniel Merl. 2013. Scuba: Diving into data at Facebook. In Proceedings of the International
Conference on Very Large Data Bases (VLDB’13).

R. Falsett, R. Seyer, and C. Siemers. 2004. Limitation of the response time of a software process. Retrieved
March 29, 2017, from http://www.google.com/patents/WO2003069424A3?cl=en

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, et al. 2010. The AI be-
hind Watson-the technical article. AI Magazine. Retrieved March 29, 2017, from http://www.aaai.org/
Magazine/Watson/watson.php.

Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. 2007. X-trace: A pervasive
network tracing framework. In Proceedings of the 4th USENIX Conference on Networked Systems Design
and Implementation (NSDI’07). 20.

B. Forrest. 2009. Bing and Google Agree: Slow Pages Lose Users. Retrieved March 29, 2017, from
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html.

Armando Fox, Steven D. Gribble, Yatin Chawathe, and Eric A. Brewer. 1998. Adapting to network and client
variation using infrastructural process proxies: Lessons and perspectives. Personal Communications 5,
10–19.

Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. 2014. Adaptive, model-driven
autoscaling for cloud applications. In Proceedings of the 2014 International Conference on Autonomic
Computing.

A. Gelfond. 2011. TripAdvisor Architecture—40M Visitors, 200M Dynamic Page Views, 30TB Data. Re-
trieved March 29, 2017, from http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-
visitors-200m-dynamic-page-view.html.

A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H. Jacobsen. 2013. BigBench: Towards
an industry standard benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD’13). 1197–1208.

I. Goiri, R. Bianchini, S. Nagarakatte, and T. Nguyen. 2015. ApproxHadoop: Bringing approximations to
MapReduce frameworks. In Proceedings of the 20th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’15). 383–397.

Y. Guo, P. Lama, J. Rao, and X. Zhou. 2013. V-Cache: Towards flexible resource provisioning for multi-tier
applications in iaas clouds. In Proceedings of the International Symposium on Parallel and Distributed
Processing.

Yuxiong He, Sameh Elnikety, James Larus, and Chenyu Yan. 2012a. Zeta: Scheduling interactive services
with partial execution. In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC’12).
Article No. 12.

Yuxiong He, Sameh Elnikety, and Hongyang Sun. 2011. Tians scheduling: Using partial processing in best-
effort applications. In Proceedings of the 2011 31st International Conference on Distributed Computing
Systems (ICDCS’11).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

11:30 J. Kelley et al.

Yuxiong He, Zihao Ye, Qiang Fu, and Sameh Elnikety. 2012b. Budget-based control for interactive services
with adaptive execution. In Proceedings of the 2012 International Conference on Autonomic Computing.

Intel Corporation. 2016. GitHub: intel-hadoop/Big-Data-Benchmark-for-Big-Bench: Big Bench Workload
Development. Retrieved March 29, 2017, from https://github.com/intel-hadoop/Big-Data-Benchmark-
for-Big-Bench.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. 2013. Speeding up distributed
request-response workflows. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(SIGCOMM’13). 219–230.

M. Jeon, Y. He, S. Elnikety, A. Cox, and S. Rixner. 2013. Adaptive parallelization of Web search. In Proceedings
of the 2013 EuroSys Conference.

Niranjan Kamat, Prasanth Jayachandran, Kathik Tunga, and Arnab Nandi. 2014. Distributed interac-
tive cube exploration. In Proceedings of the 30th IEEE International Conference on Data Engineering
(ICDE’14).

J. Kelley, C. Stewart, S. Elnikety, and Y. He. 2013. Cache provisioning for interactive NLP services. In
Proceedings of the Workshop on Large-Scale Distributed Systems and Middleware.

Jaimie Kelley, Christopher Stewart, Nathaniel Morris, Devesh Tiwari, Yuxiong He, and Sameh Elnikety.
2015. Measuring and managing answer quality for online data-intensive services. In Proceedings of the
2015 International Conference on Autonomic Computing.

J. Kephart and J. Lenchner. 2015. A symbiotic cognitive computing perspective on autonomic computing. In
Proceedings of the 2015 International Conference on Autonomic Computing.

YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. SkewTune: Mitigating skew
in MapReduce applications. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (SIGMOD’12). 25–36.

Palden Lama and Xiaobo Zhou. 2012. AROMA: Automated resource allocation and configuration of MapRe-
duce environment in the cloud. In Proceedings of the 9th International Conference on Autonomic
Computing.

George Lawton. 2005. LAMP lights enterprise development efforts. Computer 9, 18–20.

Jon Lenchner. 2011. Knowing What It Knows: Selected Nuances of Watson’s Strategy. Retrieved March 29,
2017, from https://www.ibm.com/blogs/research/2011/02/knowing-what-it-knows-selected-nuances-of-
watsons-strategy/.

Lucid Imagination. 2010. The Case for Lucene/Solr: Real World Search Applications. White Paper. Lucid
Imagination.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schtze. 2008. Introduction to Information Re-
trieval. Cambridge University Press, Cambridge, MA.

D. Meisner, B. Gold, and T. Wenisch. 2009. PowerNap: Eliminating server idle power. In ACM ASPLOS.

D. Meisner, C. Sadler, L. Barroso, W.-D. Weber, and T. F. Wenisch. 2011. Power management of on-line data
intensive services. In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XIV). 205–216.

Stephanie Muhammad, Jaimie Kelley, and Christopher Stewart. 2016. Ed Watson: Teaching big data to K-12
students. In Proceedings of the 2016 Spring Undergraduate Research Expo.

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martin Abadi. 2013.
Naiad: A timely dataflow system. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles. ACM, New York, NY, 439–455.

Netflix. 2009. Netflix Prize. Retrieved March 29, 2017, from http://www.netflixprize.com/

Joao Paiva, Pedro Ruivo, Paolo Romano, and Luı́s Rodrigues. 2013. AUTOPLACER: Scalable self-tuning
data placement in distributed key-value stores.. In Proceedings of the 2013 International Conference on
Autonomic Computing.

Redislabs. 2016. Redis. Retrieved March 29, 2017, from http://redis.io/

Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn McKinley. 2013. Exploiting processor heterogeneity
in interactive services. In Proceedings of the 2013 International Conference on Autonomic Computing.

Research Studios Austria Forschungsgesellschaft mbH. 2014. Easyrec: Open Source Recommendation En-
gine. Retrieved March 29, 2017, from http://easyrec.org/.

Nico Schlaefer. 2013. The Ephyra Question Answering System. Retrieved March 29, 2017, from https://
sourceforge.net/projects/openephyra/.

Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen. 2012. Power containers:
An OS facility for fine-grained power and energy management on multicore servers. In AProceedings of
the 18th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’13).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

Obtaining and Managing Answer Quality for Online Data-Intensive Services 11:31

B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbag. 2010.
Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. Google Technical Report. Retrieved
March 29, 2017, from https://research.google.com/pubs/pub36356.html.

Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. 2009. RPC chains: Efficient
client-server communication in geodistributed systems. In Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’09). 277–290.

Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. 2014. LibReDE: A library for resource
demand estimation. In Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering.

Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. 2013. Zoolander: Efficiently meeting very strict,
low-latency SLOs. In Proceedings of the 2013 International Conference on Autonomic Computing.

C. Stewart, T. Kelly, and A. Zhang. 2007. Exploiting nonstationarity for performance prediction. In Proceed-
ings of the 2007 EuroSys Conference.

Technology Laboratory’s (ITL) Retrieval Group. 2014. Text Retrieval Conference Data. Retrieved March 29,
2017, from http://trec.nist.gov/data.html.

The Apache Software Foundation. 2015. Apache Hadoop 2.7.1—Apache Hadoop NextGen MapReduce
(YARN). Retrieved March 29, 2017, from https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-
yarn-site/YARN.html.

The Apache Software Foundation. 2016. Apache Lucene Core. Retrieved March 29, 2017, from http://lucene.
apache.org/core/.

Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi, Phillip B.
Gibbons, and Todd C. Mowry. 2010. ParaLog: Enabling and accelerating online parallel monitoring of
multithreaded applications. ACM SIGARCH Computer Architecture News 38, 1, 271–284.

Wikimedia Foundation. 2014. Wikimedia Downloads. Retrieved March 29, 2017, from https://dumps.
wikimedia.org.

Wikipedia 2014. Wikipedia:Modelling Wikipedia’s Growth. Retrieved March 29, 2017, from https://en.
wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia’s_growth.

Y. Zheng, B. Ji, N. Shroff, and P. Sinha. 2015. Forget the deadline: Scheduling interactive applications in data
centers. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing (CLOUD’15).

Shlomo Zilberstein. 1996. Using anytime algorithms in intelligent systems. AI Magazine 17, 73–83.

Received April 2016; revised January 2017; accepted February 2017

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 2, No. 2, Article 11, Publication date: April 2017.

